EXPANDING

HORIZONS

AGGRESSIVE AND
ENTHUSIASTIC SOFTWARE
ENGINEERING

No Longer “Just Writing Code”

brochure distributed by The
Linited States Army Information
Swstemns Software Development
Center - Washingion (SDC-W)
states that SDC-W has been the leader
for the past 30 years in planning,
designing, testing, Implementing and
miaintaining the Standard Armvy Man-
agement Information Systems
(STAMIS).!

Horervver, at times, in many lange
organizations responsible for the de-
velopment of computer software, the
emphasis mistakenly is placed on the
implementing stape of software de-
velopment. This Is an understand-
able mistake because this is the phase
of software development when a tan-

LTC Larry G. Baker, USA

gible product (software code) |s pro-
duced, and this is the commodity de-
sired by the customer. However, this
mistake can be costhy in light of the
fact that more than 70 percent of the
software oost ks for softwane mainte-
nance (cormecting the initial softwarne
code).

The answer to the problem of “just
writing code” 15 an apgressive and
enthusiastic application of software
engineering.

What Is Software
Engineering?

A spftware engineer is one who
applies a disciplined engineering ap-
proach o software development. The

FIGUREI1. Awareness of Real-World Factors

Undirected
Programmer

Compulsive
Programmer

Software
Engineer

Serious

Programmer

Lieuterant Colonel Baker is Chief, SBISISM Division, LS. Army Software
Development Center-Washington, Information Systems Software Command,
Fort Bedvoir, Vio. He 15 o PMC 94-1 graduate.

Prograrm Monager

24

software englneer must be concemed
with more than the software solution
to the project. Most often, the engi-
neering side of the software englneer
is forgotten, and this can be costly in
terms of dollars and time. Linderstand-
ing engineering is more imporant than
understanding coding. That s, sofi-
ware engineers are engineers first and
builders of software second; they ap-
plv engineering concepts to their
work.?

The software engineering concept
is @ fairly new discipline. In the carly
times of software development. the
code was fairly simple, and could be
handled easily by one or two people.
As the size and complexity of the
software projects grew, the people who
developed the carlier projects were
involved apaln on these more com-
plex projects because they were swc-
cessful with the initial programs. This
software development style led to the
current cliché of the "software crisis.”
The fundamental cause of the soft-
ware crisis is that massive, software-
intensive systems have become
unmanageably complex.”

[n addition o the complexity of
software development efforts, the
needs and problems users present are
becoming increasingly more perplex-
img. To ensure the software solutions
that are developed ame useful o the
custoimer, software developers aust

Jby-Augusr 1964



be aware of user requirements and
real-world factors. David Marca clas-
sified as efther compulsive or sedous
programmers the original software
developers who performed software
development as programs became
more comphex.

According to Marca, four different
types of programmers exist. Program-
mers lacking purpose and awareness
of real-world factors can be classified
ds compulsive programmers. Program-
mers aware of real-world factors but
with no goals are undirected in their
work. Programmers with a clearly es-
tablished purpose are serious pro-
grammers; they approach the com-
puter intending to obtain useful
results. But, serious programmers are
not soltware engineers if they are not
aware of real-world factors. Figure 1
summarizes these programming per-
sonalities.!

The deficiency of not knowing the
real-world factors causes the serlous
programmer o create software that
fails to meet customer demands. The
principles of software engineering at-
tempt to bridge this difficult gap in
building well-engineered software.
This ability o identify and assess prac-
tical, real-world factors are key to
software development. Separating
software engineers from other pro-
grammers 15 thelr ability (o mabe de-
cisions with practical issues in mind
during all software development
phases.®

The software engineer must take user
needs and problems and apply various
poals [discussed later in this anicle)
and real-world factors to produce a
software solution for the user. To pro-
duce the comect software solution, the
software engineer must use an lestive
process with software development
ovcle to ensure the programmer's final
solutlon 15 what the user really wamnis.
Only by applying software engineering
concepis and goals can the fimal prod-
wct be usehul to the end user. Figure 2
summarizes inputs and outputs for the
sofeware englneer®

Progrom Monoger

The reliability
factor for software
must be initiated
early in its

development,
which begins with
understanding
user needs.

AT,

Software Engineering
Goals and Purposes

Software engineers must have es-
tablished purposes and goals when
developing software. Purposes and
poals are the key Ingredients separat-
ing programmers from software engi-
neers. In general, the six engineering
goals or purposes that must be met o
ensure the successiul development of
a computer software project are: time-
liness, efficiency, reliability, simplic-
ity, modifiability and cost-effective-
ness.”

The software must be done in a

timety manner to ensure that the sys-
tem being developed is not obsolete

FIGURE 2. Engineering Principles

prior to fiekling. Also, if the software
development timefcycle as shown in
Flgure 2 is too long, then user require-
ments will chanpe 0 meet the new
environment In which they ane work-
ing. At times, the efficiency require-
ment is overemphasized. It is an im-
portant goal, but only in the context of
the system being developed. If the
emphasis is 10 save one nanosecond
of CPU time, this efficiency will not be
realized by the user, even in a real-
time system. Often, this effickency can
be postponed until later in the soft-
ware development cycle when the
entire system Is more mature and a
better decision can be made regard-
ing software efficiency.

Reliability is a crucial poal for the
softwane engineer. The softwane must
be developed so it will respond cor-
rectly to the user's needs and problems.
The meliability factor for softwane miust
be initated earty in It development,
which begins with unde Lser
needs. A serious problem with reliahil-
ity occumed in one of the fist versions
of the Ballistic Missile Eardy Waming
System (BMEWS). The initial version
of this crtlcal software detected the
rising of the moon as an moving object
over the horizon and. acconding o the
sofoware alpodthms, the moon was iden-
tified as an unknown, hostle tarpet.”
The software performed exactly as
requested; the problem was, as the

Software

Engineer

Jubp-Augusr 1994



user described, In not Identlfying cor-
rectly the criteria for designating a
“target” as hostile or friendly.

The user must be kept in the devel-
opment loop to ensure the software
under development is meeting his
needs. Two of the primary poals of
software engineering — simplicity and
modifiability — are attributed to the
user and his abllity to use the sofl-
ware. Ease of use is a vital character-
istic for any software; therefore, the
user interface to the software must be
designed carefully. The user is not
interested in the internal workings of
the software; however, user interface
can be one of the most critical factors
in determining the overall success of
the sysiem.

This view of the overall softwane
package is backwards to the typical
software developer who looks prima-
rily at the software from the intermal
workings outward to the user inter-
face. As the user becomes more adept
at using the system, he will begin to
want other software enhancements ar
changes to make his job even casier.
The software engineer must be aware
of this phenomena and develop soft-
ware that will be easy to modify in the
future. This will help reduce the soft-
ware maintenance cost, which can be
two-to-three times more expensive
than the original cost of developing
the software.

Government
Standards

Help and assistance 1s avallable
for the software engineer in develop-
ing software that meets government
standards. The most important
government standard for providing
guidelines for software engineering is
DoD Standard 2167A, “Defense
System Software Development,” the
principal guide for developing soft-
wiare o government standards. This
document describes software-specific
requirements of System engineering.
shows how software fits into the “big
picture,” and provides detailed
escriptions of all documents (Data

Frogram Monoger

The user is not
interested in the
internal workings of
the software;
however, user
interface can be one
of the most critical
factors in
determining the

overall success

of the system.

AR,

Item Descriptions) that must be pro-
duced by the software engineering

team.

The DoD-5TD-2167A also empha-
sizes activities 1o be performed during
software engineering, with the activi-
thes orented more toward managing
the software-development effort
throughout the development oycle, as
opposed 1o technical approaches to
software engineering.”

Summary

Mo lonper can we in Dol develop
software in the absence of the stimul
from the user and other real-world
factors. Computer can-
not isolate themsehves from the users,
and develop software from an iso-
lated point of view. Only by applying
the software-engineering principles
can we hope to stop or at least slow
the "software crisis,” Only by enforc-
ing a disciplined engineering approach
on the software development can fu-
ture computer systems be developed
that will meet end-user needs. COmby
b using software engincering can we
eliminate the concept of the "black art

or wizardry of software development.”

5

If wee are to develop better software
{of quality, on time, under budget),
we must expand our horizons from
the narrow view of software program-
mers (writing code) 10 a more ex-
panded view of the software engineer.
We must follow a disciplined engl-
neering approach to develop software.
This approach is software engineering.

Endnotes

1. COL C.B. Mitchell, “Making Qual-
ity Software Happen,” Software De-
velopment Center - Washington 1993:
p 2

2. David Marca, Applying Software
Engineering Principles (Boston: Little,
Brown and Company, 1984) p. 3.

3. Grady Booch, Software negr-
ing with Ada (Menlo Park: The Ben-
jamin-Cummings Publishing Com-
pany, 1987) p. 28.

4. Marca, p. o

5. Marca, p. 4

6. Marca, p. 2.

7. Booch, p. 29.

8. Marca. p. 12

g, William H. Reotzheim, Develop-
fng Saftware fo Government Slandards
(Englewood Cliffs: Prentice Hall,
1991) p. 161.

Bibliography

Booch, Grady. Software Enginecring
with Ada. The Benjamin-
Cummings Publishing Compary,
Ine., Menlo Park, Calif., 1987.

David Marca. Applyving Soffware
Engineering Principles . Litle,
Brown and Company, Boston,
Mass., 1984,

Mission Critical Computer Resources
Managemen! Guide. Defense
Systems Management College,
Fort Belvolr, Va., 1992,

Rotzheim, William H. Developing
Software o Government Stan-
dards. Prentice Hall, Englewood
Cliffs, M.J.. 1991.

Vick, C.R. and C.V. Ramamoorthy.
Handbook of Software Engineer-
ing. Van Nostrand Reinhold
Compamy, Mew York, MY, 1984,

Jub-Augus 1994



